Homework \#9 (10 points) - Show all work on the following problems:

Problem 1 (2.5 points): By approximating a capacitor as an electric dipole, calculate the total energy lost to radiation from a capacitor as it discharges through a resistor, as a fraction of the initial energy stored in the capacitor. Assume a parallel-plate capacitor with capacitance C, plate separation d, and initial charge $+Q_{0}$ on one plate and $-Q_{0}$ on the other, so that the initial stored energy is $Q_{0}^{2} /(2 C)$. Assume this capacitor discharges through a resistor with resistance R, so that $Q(t)=Q_{0} e^{-t / R C}$. Hint: The radiative losses are very small.

Problem 2 (2.5 points): Calculate the power radiated from an insulating circular ring of radius b that lies in the $x-y$ plane, centered at the origin, assuming that it has a charge density $\lambda=\lambda_{0} \sin \phi$ and that it rotates with an angular velocity ω about the z-axis

Problem 3 (2.5 points): Drop an electron from rest in normal earth's gravity. As it falls, it gains kinetic energy from the gravitational potential energy. However, it also loses a small amount of energy to radiation. What fraction of the electron's gravitational potential energy loss goes into radiation in the first centimeter of free-fall? Hint: Not much.

Problem 4 (2.5 points): In the Bohr model for hydrogen, the electron in its ground state follows a circular orbit with a radius a_{0} (the Bohr radius $=5 \times 10^{-11} \mathrm{~m}$) around the proton. Assuming a circular orbit with an initial radius a_{0}, use the Larmor formula to calculate the energy loss due to radiation as the electron's orbit spirals in toward the nucleus (you can assume each orbit is circular, but with a decreasing radius). Integrate to find the "classical" lifetime of the hydrogen atom under radiative losses. Hint: It's pretty short!

Note: The resolution to this seeming paradox lies in quantum mechanics. Since the electron energy levels are quantized, the H atom can only radiate energy in discrete quanta, and it cannot radiate from the ground state at all.

