Homework #9 (10 points) - Show all work on the following problems:

Problem 1 (2.5 points): By approximating a capacitor as an electric dipole, calculate the total energy lost to radiation from a capacitor as it discharges through a resistor, as a fraction of the initial energy stored in the capacitor. Assume a parallel-plate capacitor with capacitance *C*, plate separation *d*, and initial charge $+Q_0$ on one plate and $-Q_0$ on the other, so that the initial stored energy is $Q_0^2/(2C)$. Assume this capacitor discharges through a resistor with resistance *R*, so that $Q(t) = Q_0 e^{-t/RC}$. *Hint: The radiative losses are very small.*

Problem 2 (2.5 points): Calculate the power radiated from an insulating circular ring of radius *b* that lies in the x-y plane, centered at the origin, assuming that it has a charge density $\lambda = \lambda_0 \sin \phi$ and that it rotates with an angular velocity ω about the z-axis

Problem 3 (2.5 points): Drop an electron from rest in normal earth's gravity. As it falls, it gains kinetic energy from the gravitational potential energy. However, it also loses a small amount of energy to radiation. What fraction of the electron's gravitational potential energy loss goes into radiation in the first centimeter of free-fall? *Hint: Not much.*

Problem 4 (2.5 points): In the Bohr model for hydrogen, the electron in its ground state follows a circular orbit with a radius a_0 (the Bohr radius = 5×10^{-11} m) around the proton. Assuming a circular orbit with an initial radius a_0 use the Larmor formula to calculate the energy loss due to radiation as the electron's orbit spirals in toward the nucleus (you can assume each orbit is circular, but with a decreasing radius). Integrate to find the "classical" lifetime of the hydrogen atom under radiative losses. *Hint: It's pretty short!*

Note: The resolution to this seeming paradox lies in quantum mechanics. Since the electron energy levels are quantized, the H atom can only radiate energy in discrete quanta, and it cannot radiate from the ground state at all.